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ABSTRACT

The statistical significance of vibration-based damage
identification parameters is studied via application to the data
from the tests performed on the Interstate 40 highway bridge in
Albuquerque, New Mexico. A test of statistical significance is
applied to the mean and confidence interval estimates of the
modal properties and the corresponding damage indicators.
The damage indicator used in this study is the change in the
measured flexibility matrix. Previously presented deterministic
results indicate that damage is detectable in all of the damage
cases from these data sets. The results of this study indicate that
the changes in both the modal properties and the damage indi-
cators are statistically significant for all of the damage cases.
However, these changes are distributed spatially for the first
three damage cases and do not localize the damage until the
fourth and final damage case.

INTRODUCTION

Damage identification using changes in measured modal
parameters is a topic that has received considerable attention in
the literature in recent years. A review of the state of the art in
the field is presented in Ref. [1]. The damage identification ex-
periments on the I-40 bridge over the Rio Grande River in Al-
buquerque, New Mexico, described in Ref. [2], produced what
is to date one of the most studied data sets in the field of vibra-
tion-based damage identification. A number of different re-
searchers have analyzed these damage cases, including:
Stubbs, et al. [3], Jauregui and Farrar [4], [5], [6], Alvin [7],
Simmermacher, et al. [8], James, et al. [9], and Mayes [10].

However, one aspect of these data sets that has not been
examined is the statistical significance of the damage identifi-
cation results. Characterization of the statistical confidence on
the damage identification results is important in order to be able
to state that the observed changes are statistically significant,
and therefore most likely not the result of random variability in

the measurements. Previously, very little has been published on
the application of statistical confidence to damage identifica-
tion. The exception is the work of Mazurek [11], who used the
measured confidence intervals on the damage indicator as an
inverse-weighting criteria for damage identification.

This study is motivated by previous damage identification
analyses of the I-40 data sets that have raised questions about
false positive indications due to test-to-test random variations
rather than statistically significant changes caused by the actual
damage. For example, Farrar and Jauregui [6] applied 5 differ-
ent damage identification techniques to the I-40 data sets, and
3 of them successfully identified the damage at the lowest level
damage case. However, when they attempted to simulate the
lowest level of damage from the I-40 tests using a finite ele-
ment model, they were unable to get the same level of conclu-
sive damage indication as from the experimental result. Of
course, this result could be an effect of the inability to properly
model the dynamic effects of the damage case, but regardless it
raises the question of whether the observed indicators in this
lowest level of damage are just a result of random variations. In
another study, Alvin [7] showed that the three lowest level
damage cases from the I-40 tests did not differ significantly
from his FEM than the undamaged case did. Thus, he conclud-
ed that the three lower level damage cases did not produce sig-
nificant enough changes in the modal properties to enable
detection of the damage.

The focus of this study is to explore the issue of the statis-
tical significance of the changes in the modal parameters and
damage indicators between the various damage cases in the I-
40 experiments. The emphasis is on very simple ways to deter-
mine the statistical significance of the changes from case to
case. The approach demonstrated in this paper uses Monte Car-
lo analysis to compute statistical confidence intervals on the
mode shape components and damage indication parameters (in
this case modal flexibility components). Then a statistical dif-



ference test is employed to associate a confidence level with the
statement that the means between the two sample sets are sig-
nificantly different. This statistical difference test is applied to
the individual flexibility components to determine if the flexi-
bility change at that particular degree of freedom (DOF) should
be considered to be statistically significant or not. These differ-
ence statistics indicate the relative significance of the changes
in a particular parameter relative to changes in other parame-
ters.

It should be noted, however, that the results of this analy-
sis can only discriminate whether the observed changes are sta-
tistically significant, not whether the source of the observed
changes is structural damage. For example, a systematic error
in the testing procedure or a change in the structural boundary
conditions can both lead to a statistically significant change in
measured structural flexibility, which the analyst may falsely
conclude is the result of structural damage. The exception is
when a change of larger significance is isolated at one particu-
lar DOF or set of spatially close DOF. Discriminating between
changes resulting from damage and changes resulting from oth-
er systematic errors or unknown effects is beyond the scope of
this research. The only statement that can be made from this re-
sult is whether or not the observed changes at each DOF are sta-
tistically significant.

The results presented in this paper indicate that the chang-
es in both the mode shapes and flexibility components are sta-
tistically significant for the first three damage cases, but that
there is no significant indication of localized flexibility change
(and thus damage) until the fourth damage case. The paper be-
gins with a summary of the I-40 experiment and damage cases.
Next, an outline of the theory used to perform the modal iden-
tification, the damage identification, and the statistical analysis
is presented. Following that, the statistical confidence intervals
of the modal parameters are presented, as well as the determin-
istic damage identification results and the values indicating the
statistical significance of the damage identification results.

THE I-40 BRIDGE DAMAGE 
IDENTIFICATION EXPERIMENT

The research described in this paper uses data from a se-
ries of modal tests of a section of a highway bridge. The bridge
was located along Interstate Highway 40 across the Rio Grande
River in Albuquerque, New Mexico. A series of modal tests
was performed on this bridge after it had been closed to traffic
prior to demolition in 1993. The bridge was constructed of a
concrete deck approximately 13.3 m wide and 17.8 cm thick,
supported by two steel plate girders, each 3.05m high, and three
steel stringers. The section of the bridge that was instrumented
for this series of modal tests consisted of three spans with a
combined length of about 130 m. The instrumentation consist-
ed of 13 accelerometers mounted to each of the two plate gird-
ers along the length of the three spans, for a total of 26 response
measurements. The excitation system consisted of a 9863 kg
reaction mass supported by three air springs moved by a 9.79

kN hydraulic actuator. The actuator system was placed on the
deck directly over one of the plate girders in the middle of the
span closest to the abutment. Full details of the modal testing of
this bridge can be found in Farrar, et al. [2].

The damage that was introduced was intended to simulate
fatigue cracking that has been observed in plate-girder bridges.
Four levels of damage were introduced by making various
torch cuts in the web and flange of the girder, as shown in Fig-
ure 1. The first level of damage, designated E-1, consisted of a

61-cm-long (2 ft.), 10-mm-wide (3/8-in) cut through the web
centered at mid-height of the web. Next, this cut was continued
to the bottom of the web to produce a second level of damage
designated E-2. For the third level of damage, E-3, the flange
was then cut halfway in from either side directly below the cut
in the web. Finally, the flange was cut completely through for
damage case E-4 leaving the top 1.22m of the web and the top
flange to carry the load at this location. After this damage case
this span of the bridge was sagging about 2 cm at the damage
location. This damage location is at DOF 20 in the modal data
sets.

THEORETICAL DEVELOPMENT

The analysis of damage identification considering the sta-
tistical significance of the damage indicators requires the deter-
mination of statistical confidence intervals. These intervals are
determined by first computing confidence intervals on the mea-
sured modal data. Next, the statistics are propagated (via Monte
Carlo simulations) to the identified modal parameters and then
to the damage indicators.

This section of the paper contains an outline of the theory
and procedures used in this research. The sections on modal pa-

Figure 1. The Four Levels of Damage Induced by Cutting 
the I-40 Plate Girder
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rameter identification, random error analysis on modal data,
Monte Carlo simulation, and damage identification using mea-
sured flexibility are abbreviated as this information is presented
thoroughly in other published sources.

Modal Parameter Identification

The method used for the results stated in this paper is the
Rational Polynomial curve fit, as presented originally by Rich-
ardson and Formenti [12], although in practice any modal pa-
rameter identification algorithm could be used. The Rational
Polynomial curve fit is based on the expression of the frequen-
cy response function (FRF) between a given input-output pair
as a ratio of two polynomials. This expression can be written as

(1)

where p is the number of modes and r is the number of residual
terms. The residual terms account for the influence of modes
which are located outside the measurement bandwidth. The ra-
tional polynomial form of Eq. (1) can be converted to pole-res-
idue form using standard techniques and from there the modal
parameters can be extracted.

Estimation of Random Error in Measured Modal Data

The first step in this analysis is the determination of ran-
dom errors on measured FRF data in the form of statistical con-
fidence intervals. Measured data contain errors caused by many
sources that result in measured spectral function estimates that
are not equal to the actual spectral functions of the structure.
The errors that are present in the measured modal data can be
divided into two basic categories, as described in Bendat and
Piersol [18] and Allemang [13]: bias (systematic) errors and
random errors. Bias errors cause the mean of the function esti-
mate not to converge to the actual value of the function as more
averages are taken. The random errors on these data are quan-
tified in the form of a standard deviation associated with the
mean of the FRF estimate magnitude and phase at each fre-
quency line for each measurement DOF. The details of this
computation are presented by Doebling and Farrar [14].

After the mean and the standard deviation of the estimate
have been computed, they are usually expressed in association
with a statistical confidence level that is defined by the assumed
distribution of the estimate. For a normal distribution, plus and
minus one standard deviation is the confidence interval for a
68% confidence level and plus or minus two standard devia-

tions is the confidence interval for (approximately) a 95% con-
fidence level. Thus, given the mean µ and the standard
deviation σ of an estimate, and assuming that the distribution is
Gaussian, there is a 68% probability that the next value mea-
sured, v, will fall into the range

(2)

Likewise, there is a 95% probability that the next value mea-
sured, v, will fall into the range

(3)

Monte Carlo Simulation And Application To Modal 
Parameter Identification

The next step in the analysis is the estimation of confi-
dence intervals on the measured modal parameter, e.g. the mod-
al frequencies and mode shape components. One approach that
can be used to characterize errors on identified modal parame-
ters given the distribution of the errors on the data is known as
Monte Carlo simulation, as described in Press, et al. [15]. Mon-
te Carlo simulation is a procedure whereby noisy data sets are
repeatedly “simulated” using the assumed statistical distribu-
tion of error on the data. The identification procedure is then
applied to each of the simulated data sets, producing a set of
identified modal parameters. After a sufficient number of sim-
ulations, the distribution of the resulting set of identified modal
parameters is assumed to be representative of the distribution of
the true modal parameters plus the effects of the measurement
errors. A complete description of the procedure used to com-
pute the confidence intervals in the modal parameters for this
research is presented by Doebling and Farrar [14].

Damage Identification Using Modal Flexibility Change

The vibration-based damage identification method used in
this research idealizes the change in the dynamically measured
flexibility matrix as an estimate of the change in the static be-
havior of the structure. Because the flexibility matrix is defined
as the inverse of the static stiffness matrix, the flexibility matrix

 relates the applied static force  and resulting structur-
al displacement  as

(4)

Thus, each column of the flexibility matrix represents the dis-
placement pattern of the structure associated with a unit force
applied at the associated DOF.

The measured flexibility matrix is estimated from the
mass-normalized measured mode shapes  and squared
modal frequencies  as

(5)
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The formulation of the flexibility matrix in Eq. (5) is approxi-
mate due to the fact that only the first few modes of the struc-
ture (typically the lowest-frequency modes) are measured. The
synthesis of the complete static flexibility matrix would require
the measurement of all of the mode shapes and frequencies.

For this particular study, the difference in the diagonal
values of the flexibility matrices before and after damage is
used as an indicator of damage, in a manner similar to that pre-
sented by Robinson, et al. [16]. The change in the diagonal
components represents the change in local flexibility at a point;
i.e. the change in the point displacement observed by applying
a unit load at that point. This technique is sometimes referred to
as the “multi-point flexibility change” technique.

Confidence Intervals On Flexibility Damage Indicator

A Monte Carlo procedure similar to that used to estimate
the confidence intervals on the identified modal parameters is
used to estimate the confidence intervals on the values of the
flexibility change used as the damage indicator. Specifically,
the confidence intervals on the mode shapes and modal fre-
quencies are used to define a normal probability distribution on
each component used to compute the flexibility. Then uncertain
values of the modal parameters are computed repeatedly and
the diagonal values of the flexibility matrix are computed each
time for each damage case. After a sufficient number of runs
(determined using convergence of the mean and standard devi-
ations as well as the skewness and kurtosis of the distribution,
as discussed in Ref. [14]), a statistical distribution is formed on
the flexibility change parameters and a mean and confidence
intervals are computed. Thus, the damage indicator (in this case
the diagonal values of the flexibility change) now has statistical
confidence intervals associated with it.

Tests of Significant Difference Between Sample Means

To assess whether the observed change between the un-
damaged and damaged flexibility coefficients is statistically
significant, a statistical test known as the t-test is used. As de-
scribed by Freund [17], given two population samples of size

 and  with sample means  and  and sample standard
deviations  and , a test statistic  can be defined as

(6)

to describe the hypothesis , i.e. that the two
sample means differ by an arbitrary value . This formulation
assumes that  and  are large enough to invoke the central
limit theorem and thus assume normal distributions in the pop-
ulations.

Using this statistical approach, the objective is to test the
hypothesis that one sample mean is statistically larger than the
other, written as

(7)

Solving for  in Eq. (6) with , it can then be stated that
Eq. (7) is true to approximately the 95% confidence level if

. Also, it can be stated that larger values of z indicate
more confidence that the difference in the sample means is sta-
tistically significant. We can thus define parameter changes
that have larger values of z as being “more significant chang-
es”.

EXPERIMENTAL RESULTS, 
STATISTICAL ANALYSIS, AND 

DISCUSSION

The most basic sets of results from the identification of the
modal parameters using the Monte Carlo estimation technique
describe above are the confidence intervals on the identified
modal frequencies, modal damping ratios, and mode shape
components for each damage case. A comparison of the first
modal frequency for each damage case with  confidence in-
tervals is shown in Figure 2. As shown in this figure, the 
confidence intervals are so small relative to the change from
case to case that the  and  markers are barely distin-
guishable from each other. A close up of Figure 2 showing only
the undamaged case and the first two damage cases is shown in
Figure 3.  In this figure, the confidence intervals are distin-

guishable, but it is still obvious that the change from case to
case is much greater than the confidence interval for each case.
These results indicate that the changes in modal frequency from
one damage case to the next tend to be statistically significant
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Figure 2. First Modal Frequency for each Damage Case
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with respect to the level of uncertainty arising from experimen-
tal repeatability. 

A comparison of the first mode shape (plotted against
DOF number) for the undamaged and first damage cases (in-
cluding  confidence intervals) is shown in Figure 4. This
figure demonstrates that there is a slight shift in this mode
shape after the first damage state is applied. The confidence in-
tervals at some degrees of freedom clearly overlap, while the
confidence intervals at other degrees of freedom do not overlap.
In contrast to Figure 4, a comparison of the first mode shape for
the undamaged and fourth damage cases is shown in Figure 5.
This figure demonstrates that there is a major shift in this mode
shape after the fourth damage state is applied. Thus it is clear
that there is a significant change in some components of mode
shape 1 for damage case 4, but the result is not as conclusive for
damage case 1.

A similar comparison of the third mode shape for the un-
damaged and fourth damage cases is shown in Figure 6. This
figure demonstrates that there is a very slight shift in this mode
shape even after the fourth damage state is applied. The confi-
dence intervals at almost all degrees of freedom clearly overlap.
Upon close inspection of this mode shape, it is apparent that it
has a node at DOF 20, which is the location where the damage
is applied. Thus it is logical that this mode is insensitive to dam-
age at DOF 20 for all four damage cases.

The previous three comparisons give an idea of the statis-
tical significance of the changes of these mode shapes as a re-
sult of damage, but in a purely qualitative manner. To compare
the relative level of statistical significance of the changes in
these mode shapes after damage in a more quantitative manner,
the z-statistics for  were computed using Eq. (6). The
values of these z-statistics are shown in Figure 7. The three
lines represent the z-statistic values of the differences between
each of the mode shape pairs in Figure 4, Figure 5, and Figure
6. As discussed in the theory section, the z-statistics give a mea-

sure of statistical significance of the change of each mode shape
component. It is clear from this plot that the only mode shape
component that has a significantly larger change than the other
components is at DOF 20 for the comparison of the undamaged
first mode to the first mode after damage case 4. It can be seen
in this plot that the change of mode 1 from undamaged to dam-
age case 1 and the change of mode 3 from undamaged to dam-
age case 4 are of about equal significance. Noting that mode
three is almost totally insensitive to the damage, it is logical to
assume that the changes in mode shape 3 (as well as mode
shape 1 for damage case 1) do not result from damage, but rath-
er from some other change in the experimental conditions.

Another comparison of z-statistics, Figure 8, shows the
statistical significance of the changes in mode shape 1 for each
damage case. This comparison would seem to support the as-
sertion that the fourth damage case is the only one that demon-
strates significant change in its modal properties as a result of
damage. However, the real measure of the statistical signifi-
cance of the changes must be made with respect to the damage
indicator function and not with respect to the raw modal prop-
erties. Such a comparison follows in the next section.

Damage Identification using Measured Flexibility 
Change

The change in the measured flexibility parameters is used
as an indicator of structural damage for the I-40 test results. The
changes in the point-flexibility (diagonal values of the flexibil-
ity matrix) are shown for each damage case in Figure 9. Ac-
cording to these computations, the largest change in flexibility
for each of the damage cases occurs at DOF 20, which is the
known location of the damage. The second largest change is at
DOF 7, which is the symmetric location across the span from
the damage location. However, as mentioned in the introduc-
tion, other researchers have found reason to believe that this
fact is mere coincidence and that damage is not actually being
detected until the final damage case.

To study the statistical significance of the flexibility
changes presented in Figure 9, it is necessary to compute statis-
tical confidence intervals on the measured flexibility from the
undamaged case and each damage case. The estimation of these
intervals is accomplished by means of a Monte Carlo analysis,
as explained earlier in the paper.

The z-statistics of Eq. (6) with  are again used,
this time to determine the relative significance of the changes
in the measured flexibility components. A chart showing the z-
statistic values for the changes in the flexibility components is
presented in Figure 10. Upon examination of these values, the
first observation that is apparent is that each damage case dem-
onstrates a significant change from the undamaged case, as
proven by the values of z which are much larger that 2 (in fact,
are on the order of 10 and 20). However, this result alone only
demonstrates that the changes in the structural flexibility are
statistically significant with respect to the measurement repeat-

Figure 3. First Modal Frequency for 
First Two Damage Cases
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Figure 4. First Mode Shape for Undamaged Case and First Damage Case

Figure 5. First Mode Shape for Undamaged Case and Fourth Damage Case

Figure 6. Third Mode Shape for Undamaged Case and Fourth Damage Case
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ability, not that the identification of the damage location is sta-
tistically significant. 

The second observation that is apparent from examination
of Figure 10 is that until damage case 4, there is not a single par-
ticular flexibility component that is noticeably larger than the
others, implying that there is no localized damage. To illustrate
this point, consider damage case 1. If the changes in flexibility
for damage case 1 were caused by localized damage, then one
would expect to see a more significant change at one particular
flexibility component. The changes in flexibility of approxi-
mately equal significance at several locations on the bridge in-
dicate that variabilities other then localized damage are present
in this data set. Thus, it can be stated that all four of the damage
cases in the I-40 experiment show statistically significant
changes in measured flexibility. However, it cannot be stated
that these changes conclusively localize the damage until the
fourth and final damage case.

CONCLUSIONS

The statistical significance of vibration-based damage
identification parameters was studied via application to the data
from tests performed on the Interstate 40 highway bridge in Al-
buquerque, New Mexico. A test of statistical significance was
applied to the mean and confidence interval estimates of the
modal properties and the corresponding indicators of damage
in the form of the change in the measured flexibility matrix.
Previously presented deterministic results indicate that damage
is detectable in all of the damage cases from these data sets. The
results of this study indicate that the changes in both the modal
properties and the damage indicators are statistically significant
for all of the damage cases. However, these changes are distrib-
uted spatially for the first three damage cases and do not local-
ize the damage until the fourth and final damage case. Perhaps
an approach to consider for future studies of this type is the gen-

Figure 7. Comparison of Z-Statistics for Mode Shape 
Change Comparisons

Figure 8. Comparison of Z-Statistics for Mode Shape 1 for 
Each Damage Case vs. Undamaged
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Figure 9. Flexibility Change for All 4 Damage Cases

Figure 10. Z-statistic values for Flexibility Change for All 4 
Damage Cases

0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6
x 10

−4

DOF Number

F
le

xi
bi

lit
y 

C
ha

ng
e

Damage Case 1
Damage Case 2
Damage Case 3
Damage Case 4

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

DOF Number

Z
 S

ta
tis

tic

Damage Case 1
Damage Case 2
Damage Case 3
Damage Case 4



eration of a “damage noise floor” by computing damage indi-
cators between multiple undamaged data sets. This approach
would produce a baseline value for the damage indicator at
each DOF that could be expected as a result of test-to-test vari-
ations. The damage indicators computed using subsequent data
sets could then be compared to the damage noise floor to quan-
tify the statistical significance of the structural damage.
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